Today, healthcare-associated infections (HAIs) continue to have an impact on both reimbursement for healthcare providers (HCPs) and the way in which HCPs are held accountable for patient care. In spite of efforts to decrease the number of HAIs in acute care settings, an estimated 4.5 million patients are exposed to HAIs and 2.5 million patients develop HAIs in the US each year.1 Annually, this results in 90,000 deaths and over $5.7 billion dollars of additional healthcare costs.2 HAIs are a major concern to infection control practitioners in acute care and outpatient settings. Adequate nurse staffing, compliance with proper hand hygiene, environmental factors associated with medical equipment, and improved surveillance of HAIs are strategies being used to improve patient care outcomes and reduce the incidence of HAIs. The purpose of this paper is to discuss infection control practices for the environment, provide evidence about electrocardiogram (ECG) lead wires and monitoring device systems (wireless versus non-wireless), and discuss innovative technologies that may reduce cross-contamination between monitored patients.

Prevention of HAIs in acute care facilities has been complex. Several studies3,4 have been conducted to demonstrate that the surfaces of medical equipment, and improved surveillance of HAIs are being used to improve patient care outcomes and reduce the incidence of HAIs. The purpose of this paper is to discuss infection control practices for the environment, provide evidence about electrocardiogram (ECG) lead wires and monitoring device systems (wireless versus non-wireless), and discuss innovative technologies that may reduce cross-contamination between monitored patients.

LifeSync Technology
One way to combat cross-contamination of ECG lead wires and enhance infection control practices is to develop innovative technologies that provide ‘single use’ and ‘remote monitoring.’ Both of these principles have been developed by LifeSync Corporation, which uses Bluetooth® technology to monitor patients without the need for ‘tethered’ lead wires. The Bluetooth wireless technology provides two-way communication between the patient and a monitor station and allows mobility of the patient both within and outside the immediate hospital unit. Other advantages include the radiolucency of the ECG electrodes, which allows patients to continue to be monitored while undergoing diagnostic procedures such as X-ray or fluoroscopy. Additionally, a 12-lead ECG can be completed while continuously monitoring the patient without attaching additional ECG wire leads. Using the LifeSync monitoring system has a direct impact on HAIs since the disposable system is used once only. HCPs do not need to attach or re-attach lead wires during the patient’s hospital stay, nor do they need to clean or decontaminate re-usable lead wires. The disposable single-use lead wire feature also allows for decreased hand-to-skin contact by HCPs by eliminating the need to re-adjust monitoring leads during transport, diagnostic testing, or a 12-lead ECG.

Use of Wireless versus Non-wireless Monitoring for Infection Control
Currently, the new wireless (LifeSync Corporation, Fort Lauderdale, Florida) ECG lead wire monitoring system has demonstrated positive
results in a clinical setting. Patients who remain on ‘hard-wired’ ECG leads often experience mobility problems since HCPs have to provide monitors to transport patients and have to continuously connect or reconnect ECG wires when performing 12-lead ECG. Pilot data from several hospital personnel who have used the LifeSync wireless monitoring system have reported positive patient outcomes related to patient transport, improved infection rates associated with cross-contamination from MRSA or VRE, and increased patient satisfaction with mobility during diagnostic testing (cath labs, stress tests). One hospital administrator has reported that within six months of the implementation of the LifeSync® LeadWear Disposable, all central-line bloodstream infections were eliminated. Additionally, at the same hospital a cost saving of $96,300 occurred during 2007 and an estimated saving of $231,300 was projected for 2008 due to use of the LifeSync LeadWear Disposable.

Costs—Disposable versus Re-use
When new technology is introduced into a healthcare delivery system, the ‘start-up’ costs often include the need for new equipment, costs associated with educating HCPs, and clinical practice changes associated with patient safety policies. The use of re-usable hospital equipment had become the gold standard of choice because of the cost of the initial equipment and concern about environmental recycling, and also as a means to decrease the overall cost of healthcare.12 However, today—in an era of concern about the cost of HAIs and future patient reimbursement for infections related to the urinary tract, surgical site, bloodstream, or pneumonia—administrators need to re-evaluate the use of single-use disposable equipment or re-using outdated equipment. Since an HAI increases the patient’s length of hospital stay (9.5 days13), costs have been estimated to be an additional $38,656 per patient. If one new technology (lead wires) can reduce or eradicate the potential for an HAI, the long-term effects of implementing a disposable monitoring system would pay for themselves.

Given the fact that in March 2008 the US Government Accountability Office recommended new reimbursement guidelines for HAIs beginning in fall 2008, it seems logical that most hospital administrators will embrace new technologies that prevent or reduce HAIs.

Patient Safety
The use of a wireless monitoring system for hospitalized patients may have several patient safety advantages. These include:

• reduction in patient falls from tripping on ‘hard wires’ during transport or toileting;
• reduction in cross-contamination post-operatively since each unit is disposable and hand contact between HCPs and patients is minimized;
• increased patient mobility since patients do not have to worry about becoming ‘tangled’ in the equipment; and
• increased monitoring time since fewer ‘leads’ will become detached, thus decreasing false alarms.

The use of a wireless monitoring system may be one method to improve the overall clinical outcomes of monitored patients and enhance patient safety efforts within a hospital environment.

Future Platforms
Today, hospital administrators continue to strive to reduce the cost of patient care. Although the US healthcare industry has improved in terms of providing better clinical outcomes, HCPs continue to lack knowledge about the use of innovative technologies associated with monitoring patients, improving clinical data record-keeping, enhancing direct bedside care, providing virtual educational programs for patients or HCPs, and promoting systematic changes that influence patient safety measures. Perhaps future clinical information computer system platforms will be developed that allow the integration of patient data and assist HCPs to electronically record or obtain the data needed to reduce hospital stays, improve patient care outcomes, and promote prevention strategies both within and outside the hospital environment. Seamless systems of healthcare need to be developed to provide patients with information before, during, and after hospitalization so that they can be involved in their own healthcare needs. The future of the healthcare delivery system must embrace simple, proficient, and readily engineered technologies that improve the overall quality of patient care.

Disclosure
This project was supported by an educational grant from LifeSync Corporation, Fort Lauderdale, Florida (www.LifeSyncCorp.com).

3. Melzer M, Bain L, Drabu YJ, Rapid screening for MRSA: Preventing contamination from MRSA or VRE, and increased patient satisfaction with hygiene in health-care setting (No. RR-16), Atlanta: CDC, 2002;444.
4. Alla MI, Dueck C, Olson N, et al., UV-visible marker confirms that implementing a disposable monitoring system would pay for themselves.